Selection in Massively Parallel Genetic
Algorithms*

Robert J. Collins
David R. Jefferson
Artificial Life Laboratory
Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90024

Abstract

The availability of massively parallel computers makes it possible to apply
genetic algorithms to large populations and very complex applications. Among
these applications are studies of natural evolution in the emerging field of arti-
ficial life, which place special demands on the genetic algorithm. In this paper,
we characterize the difference between panmictic and local selection/mating
schemes in terms of diversity of alleles, diversity of genotypes, the inbreeding
coefficient, and the speed and robustness of the genetic algorithm. Based on
these metrics, local mating appears to not only be superior to panmictic for
artificial evolutionary simulations, but also for more traditional applications of
genetic algorithms.

*In Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kauf-
mann, 1991.



1 Introduction

The availability of powerful supercomputers such as the Connection Machine (Hillis 1985)
means that genetic algorithms are now applied to larger and more difficult optimiza-
tion problems (e.g. (Collins and Jefferson 1991a), where the search space consists of
225590 points). Some of our recent artificial life work (Jefferson et al. 1991; Collins
and Jefferson 1991b; Collins and Jefferson 1991c; Collins and Jefferson 1991a) has
involved massively parallel genetic algorithms characterized by large populations,
enormous search spaces, and fitness functions that change through time.

These simulated evolution applications place special demands on the genetic al-
gorithm. The simulations generally attempt to model the evolution of populations
of tens of thousands of artificial organisms in a simulated environment over a period
of thousands of generations. The ecosystem in which the fitness of each individual
is evaluated can potentially include both direct and indirect interactions with other
members of the population, members of coevolving populations, the background en-
vironment, etc. In addition, the environment and selection criteria may change both
during a generation and over a period of many generations (and may be different in
different parts of the simulated world). Such applications require a genetic algorithm
that is able to simultaneously explore a wide range of genotypes and can maintain
enough genetic diversity to respond to changing conditions.

Genetic algorithms that use panmictic selection and mating (where any individual
can potentially mate with any other) typically converge on a single peak of multimodal
functions, even when several solutions of equal quality exist (Deb and Goldberg 1989).
Genetic convergence is a serious problem when the adaptive landscape is constantly
changing as it does in both natural and artificial ecosystems. Crowding, sharing, and
restrictive mating are modifications to panmictic selection schemes that have been
proposed to deal with the problem of convergence, and thus allow the population
to simultaneously contain individuals on more than one peak in the adaptive land-
scape (De Jong 1975; Goldberg and Richardson 1987; Deb and Goldberg 1989). These
modifications are motivated by the natural phenomena of niches, species, and assor-
tative mating, but they make use of global knowledge of the population, phenotypic
distance measures, and global selection and mating, and thus are not well suited for
parallel implementation. Rather than attempting to directly implement these natural
phenomena, we exploit the fact that they are emergent properties of local mating.

In this paper, we introduce several metrics for evolving populations, and use them
to characterize the differences between local and panmictic selection/mating schemes.
Although our target applications involve the evolution of artificial organisms, for
computational convenience we have performed this study using the optimization of
graph partitions as the evolutionary task.

The results of this empirical study indicate that local mating is more appropriate
for artificial evolution than the panmictic mating schemes that are usually used in
genetic algorithms. In addition, local mating appears to be superior to panmictic
mating, even when considering traditional applications. Local mating (a) finds op-
timal solutions in faster; (b) typically finds multiple optimal solutions in the same
run; and (c) is much more robust. These results are encouraging, but are based on



a single optimization problem, a single recombination rate, a single mutation rate,
one local mating algorithm, and large populations. Further investigation seems both
appropriate and necessary.

2 Graph Partitioning

The graph partitioning problem (Ackley 1987) is to find two subsets V4 and V; of the
set V' of vertices of a fixed graph G such that V =V, uVy, VonVy =0, |Vo| = |V
(which assumes that |V is even), and the cut size (the number of edges with one
endpoint in Vy and the other in V7) is minimized. We represent a partition of G by a
string S of |V| bits, such that vertex i € Vgp;; (the value of each bit indicates to which
subset the corresponding vertex belongs).

In order to incorporate this problem statement into a genetic algorithm, we use
the fitness function defined by Ackley (Ackley 1987), which has a penalty that is
quadratic in the imbalance of a partition:

f(z) = —cutsize(x) — 0.1(Z(z) — O(x))?

where  is an arbitrary bit string, Z(z) is the number of 0’s in z, and O(z) is the
number of 1’s in x. The cutsize and penalty term are given negative signs to make
this a function maximization problem (with maximum value of 0).

There is little structure in small random graphs, so good partitions are relatively
easy to find by simple hill climbing methods (Ackley 1987). To make the problem
harder, a “clumpy” or multilevel graph is used (a clump is a strongly connected group
of vertices). We adopt Ackley’s multilevel graphs, where a clump consists of four fully
connected vertices, and each graph consists of two identical, disconnected pieces (so
the optimal partition has fitness 0). Each of the connected components of the graph
connects its clumps in a hypercube. For example, a 64 vertex multilevel graph consists
of 16 clumps. Each of the two connected components is cube with a clump in each
of the 8 corners.

We place the vertices within each clump and each connected component consec-
utively on the string S. This means that there are two optimal solutions to the
multilevel graph partitioning problem: |21| 0’s followed by |21| 1’s, and the bitwise
complement.

To the genetic algorithm, the clumps act as short, low—order and highly fit schemata,
thus the search is quickly focused on partitions that do not cut clumps. In order to
continue the search for an optimal partition, it is necessary to move clumps across
the partition via recombination. Recombination is necessary because moving a clump
across the cut one vertex at a time (i.e. by point mutations) results in a dramatic
decrease in fitness. The result is that the multilevel graph partitioning problem is
difficult for genetic algorithms, unless convergence can be avoided (recombination re-
quires diversity in order to have an impact, and convergence implies little diversity).



3 Evolution Metrics

In this section, we introduce four metrics that we use to characterize evolving popu-
lations. These particular metrics were chosen in order to measure and highlight the
differences in the evolutionary dynamics of structured (locally mating) and panmictic
(globally mating) populations.

3.1 Diversity of Alleles

We measure the allele diversity of a population by comparing the observed allele
frequencies to the expected allele frequencies of a maximally diverse population. In
this paper, we consider loci with exactly 2 alleles, so the maximum diversity occurs
when each allele frequency is 0.5. We define the diversity of alleles of a population at
locus (bit position) ¢ as

D; =1 —4(0.5 — observed_fregq;)*

where observed_freg; is the frequency of the 0 allele at locus ¢. D; can range from 0,
which indicates complete fixation (convergence), to 1 which indicates the maximum
possible genetic diversity. D, the genetic diversity of the population for the entire
genome S, 1s

> D;
D =
S|

which also ranges from 0 (fixation) to 1 (maximal diversity).

3.2 Diversity of Genotypes

We measure genotypic diversity by choosing a random sample (without replacement)
of 10 loci and count the number of unique genotypes (with respect to these loci)
represented in the population. A new set of loci is sampled each generation. This
provides a measure of the breadth of the genetic search.

3.3 Inbreeding Coefficient

We define inbreeding to be the mating of two individuals who are more similar to
each other than would be expected if mates were chosen randomly. The primary
effect of inbreeding is to decrease the frequency of heterozygous genotypes (Hartl and
Clark 1989). A (diploid) genotype is heterozygous at a locus if the two haplotypes
contain different alleles at that locus. The inbreeding coefficient F is calculated by
comparing the actual proportion of heterozygous genotypes in the population with
the proportion that would occur under random mating. Heterozygosity (and thus
the inbreeding coefficient) is defined in terms of diploid organisms, but with few
exceptions genetic algorithms use haploid strings. Only during sexual reproduction
are our individuals diploid, so this is when we measure F.



Let H be the observed proportion of heterozygous genotypes, and Hy be the
expected heterozygosity in a randomly mating population with the same allele fre-
quencies. The standard form for F is

_Hy—H

F
Hy

In this paper, there are two alleles (0 and 1) at each locus, so (from the Hardy-
Weinberg principle) Hy = 2p(1 — p), where p is the frequency of the 0 allele.

3.4 Speed and Robustness

We measure the speed of evolution achieved by a genetic algorithm in two ways.

e Number of generations required to discover an acceptable solution. This mea-
sure allows implementation independent comparisons.

e Computational time required to discover an acceptable solution. This measure
takes into account the varying computational costs of the reproduction portion
of the genetic algorithm.

We define the robustness to be the fraction of runs that find at least one acceptable
solution. In this paper, we define an acceptable solution as either of the two optimal
graph partitions. Since we do not always discover acceptable solutions, we stop such
runs at 1000 generations. We report speed in terms of the median run (of all runs,
including those that do not find optimal partitions).

4 Selection Schemes

4.1 Local Selection

One of the basic assumptions of Wright’s shifting balance theory of evolution is that
spatial structure exists in large populations (Wright 1969; Crow 1986). The structure
is in the form of demes, or semi-isolated subpopulations, with relatively thorough
gene mixing within a deme, but restricted gene flow between demes. One way that
demes can form in a continuous population and environment is isolation by distance:
the probability that a given parent will produce an offspring at a given location is a
fast—declining function of the geographical distance between the parent and offspring
locations. Wright’s theory of evolution has played a role in the design of several
parallel genetic algorithms (Miihlenbein 1989; Gorges-Schleuter 1989; Manderick and
Spiessens 1989; Collins and Jefferson 1991a).

To simulate isolation by distance in the selection and mating process, we place
the individuals on a toroidal, 1 or 2 dimensional grid, with one organism per grid
location. Selection and mating take place locally on this grid, with each individual
competing and mating with its nearby neighbors. In our local mating scheme, the two
parents of each offspring are the highest scoring individual encountered during two



random walks that begin at the offspring location, one parent per walk. The parents
are chosen with replacement, so it possible for the same high—scoring individual to be
encountered during both random walks, in which case it would act as both parents
for the offspring. Deme size (and thus the rate of gene flow) is a function of R, the
length of the random walks.

4.2 Stochastic Selection

The most typical panmictic selection strategy that is used in genetic algorithms is
known as stochastic selection with replacement (or roulette wheel selection) (Gold-
berg 1989). We define the probability that individual z is chosen as a parent as

P = 5%

The stochastic selection algorithm assumes that all fitness values are non—negative.
Because f, <0 for the graph partitioning problem, we adjust the fitness scores for

the stochastic selection algorithm

fa/c = fo + | min f;|

where f, is the fitness of partition z.

4.3 Linear Rank Selection

Another panmictic selection algorithm is the linear rank method (Grefenstette and
Baker 1989). The linear rank selection algorithm defines the target sampling rate

(TSR) of an individual = as

rank(z)

TSR(z) = Min+ (Max — Mm)ﬁ

where rank(z) is the index of x when the population is sorted in increasing order
based on fitness, and N is the population size. Also, the constraints that 0 < T'SR(z),
Y>TSR(z) =N, 1< Max <2, and Min + Max =2 are imposed. The TSR is the
number of times an individual should be chosen as a parent for every N sampling
operations.

5 Empirical Results

We have compared various genetic algorithms on the multilevel graph partitioning
problem. The selection algorithms that we used were local mating in both 1 and 2 di-
mensional geometries (for R = {1, 2, 3, 5, 10, 20, 30}), linear rank selection (with
Min = 0.0 and Maxz = 2.0), and stochastic selection with replacement. The opti-
mization problem is the partitioning of the 64—vertex multilevel graph. The popula-
tion size N varies over a range from 2'% = 8,192 to 2! = 524,288 individuals in each



generation. In this section, we present only a representative sample of our results,
because space constraints prevent us from presenting all of our data here.

The genetic operators include both recombination and mutation. During recom-
bination, crossovers occur with a constant probability of 0.02 between each pair of
consecutive bits, so most matings (64%) will result in zero or one crossovers, but some
matings may result in many crossovers. In a similar way, point mutations (bit flips)
occur with a constant probability of 0.001 per bit, with only 6% of the individuals
experiencing one or more mutations.

5.1 Diversity of Alleles

The diversity of alleles over time that is maintained by the four selection algorithms is
plotted in Figure 1. Both of the panmictic selection algorithms quickly lose diversity,
while both of the local selection schemes maintain a high degree of variation. Although
the 1 dimensional local scheme maintains nearly perfect variation, the 2 dimensional
algorithm loses a small amount over time. Of the two panmictic selection algorithms,
linear ranking loses diversity sooner, and stabilizes at a lower level.

IDR=1) —
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Figure 1: The diversity of alleles D maintained by the four selection algorithms.
N = 216 = 65,536 and the task is the 64 vertex multilevel graph. Each curve is the
average of 7 runs.

5.2 Diversity of Genotypes

The genotypic diversity for the four selection algorithms is plotted in Figure 2. This
data is based on a random sample (with a new sample each generation) of 10 of the 64
loci in the genome. In all four cases, the genotypic diversity begins to fall after only
a few generations. Both of the local mating schemes maintain a count of about 150



genotypes (out of a possible 1024), while stochastic selection remains around 40, and
linear rank selection around 15. With the exception of 1 dimensional local mating,
all of the algorithms quickly reach their stable values.
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Figure 2: The genotypic diversity for the four selection algorithms, based on sampling
10 loci per generation. N = 2'¢ = 65,536 and the task is the 64 vertex multilevel
graph. Each curve is the average of 7 runs.

5.3 Inbreeding Coefficient

The inbreeding coefficient for the four selection algorithms is plotted in Figure 3.
In the early generations, both of the panmictic selection algorithms show no excess
homozygosity (F near 0), while both local algorithms immediately show significant
and increasing excess homozygosity. A significant degree of inbreeding is observed in
later generations with both panmictic algorithms, and throughout the experiments for
both local selection schemes. In later generations, stochastic selection is characterized
by a much lower inbreeding coefficient than the others.

5.4 Speed and Robustness

The first speed comparison i1s based on the number of generations to the first ap-
pearance of an optimal partitioning of the 64 vertex graph (Table 1). Of the two
panmictic selection algorithms, linear rank selection finds solutions nearly twice as
fast as stochastic selection. We also note that both panmictic algorithms do not re-
liably find optimal solutions when applied to the smaller populations. For both local
mating algorithms, longer random walks result in faster evolution, and for the same
R value, 2 dimensional local mating is faster than 1 dimensional local mating. With
the exception of the most constrained local mating (1 dimensional with R = 1), local
mating always beats panmictic, and in some cases by about a factor of 7.
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Figure 3: The inbreeding coefficient F for the four selection algorithms.

N =216 =65,536 and the task is the 64 vertex multilevel graph. Each curve is
the average of 7 runs.

log, Population Size

Algorithm 13 ‘ 14 ‘ 15 ‘ 16 ‘ 17 ‘ 18 ‘ 19
Stochastic T T O[151 137|119 | t | 136
Linear Rank | 7 | 57 | 66 | 52 | 35 | 32 | 31
ID(R=1) |156 | 148 | 142 | 124 | 126 | 108 | 114
1D (R =15) 8 | 79 | 59 | 63 | 57 | 49 | 50
ID(R=10)| 56 | 50 | 47 | 50 | 43 | 40 | 41
ID(R=20)| 42 | 40 | 37 | 37 | 34 | 30 | 27
ID(R=30)| 41 | 39 | 32 | 32 | 29 | 26 | 24
2D (R=1) 48 | 43 | 41 | 42 | 40 | 40 | 38
2D (R =15) 23 | 20 | 16 | 17 | 16 | 16 | 15
2D(R=10) | 14 | 13 | 13 | 12 | 12 | 11 11
2D (R=20) | 13 | 11 10 | 11 9 9 9

5D(R=30)| 11 | 8 | 9 | 9 | 8 | 8 | 8

Table 1: Generation of first appearance of an optimal partition (median of 11 runs)
on the 64 vertex multilevel graph problem. { indicates that the median run did not
find an optimal solution within 1000 generations.



log, Population Size

Algorithm 4] 15 [ 16 [ 17 [ 18 [ 19
Stochastic T (0.57) 165 (1.09) | 285 (2.08) | 552 (4.64) | 1 (9.47) | 2652 (19.50)
Linear Rank | 40 (0.70) | 83 (1.26) | 132 (2.54) | 200 (5.72) | 379 (11.84) | 755 (24.34)
1D (R=1) | 24 (0.16) (0 29) | 70 (0.56) | 139 (1.10) | 264 (2.44) | 540 (4.74)
1D (R=5) | 15(0.19) | 21 (0.35) | 42 (0.67) | 81 (1.42) | 133 (2.72) | 265 (5.29)
1D (R = 10) | 13 (0.25) (0 42) | 37 (0.74) | 65 (1.50) | 122 (3.06) | 252 (6.15)
1D (R = 20) | 16 (0.39) | 20 (0.54) | 35 (0.95) | 72 (2.13) | 116 (3.85) | 199 (7.38)
1D (R = 30) | 16 (0.42) | 22 (0.69) | 38 (1.18) | 71 (2.44) | 120 (4.61) | 216 (9.00)
2D (R=1) | 7(0.16) (0 29) | 25 (0.59) | 51 (1.28) 8 (2.46) 185 (4.87)
2D (R=5) | 4(0.22) 6 (0.38) | 12 (0.73) | 26 (1.62) 8 (3.01) 86 (5.72)
2D (R=10) | 3 (0.26) | 6 (0.47) | 10 (0.87) | 22 (1.86) | 39 (3.54) 75 (6.86)
2D (R=20) | 4(0.39) | 7(0.67) | 13 (1.22) | 23 (2.58) 3 (4.82) 83 (9.27)
2D (R=230) | 4(0.53) | 8 (0.91) | 14 (1.60) | 26 (3.29) 9 (6.14) 93 (11.67)

Table 2: Computation time (seconds) to the first appearance of an optimal partition
(median of 11 runs) on the 64 vertex multilevel graph problem. The time (seconds)
per generation is shown in parentheses. 7 indicates that the median run did not find
an optimal solution within 1000 generations.

Across all of the genetic algorithms, increasing the population size causes only
slight speed improvements (in terms of number of generations to an optimal solution).
In addition, we found that an optimal solution is either found within a couple hundred
generations, or the run times out (across all selection algorithms). We never observed
a run that first discovered an optimal solution between generation 200 and 1000.

The second speed comparison is based on the actual time required to find an
optimal solution (Table 2). The run—time measurements reported here are based on
implementations in C++/CM++ (Collins 1990) that differ only in the selection/mate
choice code. The data was gathered on an 16K processor Connection Machine-2
equipped with 64K bits of memory per processor and 32-bit floating point accelerators,
with a Sun 4/330 front end running SunOS 4.1.1 and Connection Machine software
version 6.0.

Although the run time per generation for stochastic selection is less than linear
rank selection, it still requires more than twice as much time to find optimal solutions.
For local mating, although long random walks require significant computation, the
fastest evolution occurs when R is in the range 5 < R < 20. Even with long random
walks, the local mating algorithms run significantly faster (per generation) than the
panmictic algorithms, which accentuates the fact that local mating optimizes in fewer
generations.

When we compare the fastest panmictic algorithm that we implemented (linear
rank) to our slowest local mating algorithm (1 dimensional with R = 1), we find that
local mating is faster by about a factor of 2. When compared to the fastest local
mating algorithm (2 dimensional with R = 10), linear rank is slower by more than
an order of magnitude and stochastic selection is slower by about a factor of 25.

We measure the robustness of the various genetic algorithms in terms of the frac-
tion of runs that find one of the two optimal solutions within 1000 generations. None
of the local mating runs, across all population sizes and R values, failed to find an
optimal solution. Unlike the local algorithms, the panmictic algorithms are not 100%
robust (Table 3). Of the two panmictic algorithms, linear rank selection is more

10



‘ log, N ‘ Linear Rank ‘ Stochastic ‘

13 0.45 0.27
14 0.55 0.36
15 0.64 0.64
16 0.82 0.55
17 1.0 0.55
18 1.0 0.27
19 1.0 0.73
‘ overall ‘ 0.78 ‘ 0.48 ‘

Table 3: Fraction of runs finding an optimal solution within 1000 generations for the
panmictic selection algorithms.

robust.

6 Discussion

Simulations of the evolution of artificial organisms operate on large populations in
complex and changing ecosystems. The adaptive landscapes are generally enormous
(hundreds or thousands of orders of magnitude larger than the population size) and
constantly changing. Artificial life simulations require a genetic algorithm that is
resistant to convergence and can simultaneously explore different parts of the adaptive
landscape.

Local mating should be resistant to convergence, because each deme can ex-
plore different peaks in the adaptive landscape. Small demes allow effective ex-
ploration of the adaptive landscape, because temporary reductions in fitness are
possible, due to random genetic drift (selection would prevent this in a large pop-
ulation) (Provine 1986). When a deme discovers a higher adaptive peak, the new
genotype will spread and deliver more genes to the nearby demes. This results in
the gradual spread of the favorable alleles and allele combinations throughout the
population, by means of interdeme selection.

In our empirical experiments, we have observed that the panmictic selection al-
gorithms become focused towards one of the two optimal solutions in the very early
generations, and eventually converge on or near that solution. In fact, we have not
observed a single run in which a panmictic selection algorithm discovered both op-
timal solutions. In sharp contrast, the local mating algorithms consistently discover
both optimal solutions. For all but the smallest population sizes, both optimal solu-
tions are usually discovered many times in any one run by geographically separated
demes. Every run with a large, locally mating population resulted in a nearly even
mixture of both optimal solutions, and formed genetically homogeneous regions that
are separated by boundaries (composed of low—fitness hybrids) that are stable for
thousands of generations (Figure 4).

The genetic diversity data (Figure 1) demonstrates quite dramatically how pan-
mictic selection converges towards only one of the solutions, while local selection

11
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Figure 4: The geographical distribution of fitness scores in generation 150 a run
using the 2 dimensional local mating algorithm (R = 1) with a population size of
216 = 65,536 on the 64-vertex multilevel graph partitioning problem. Individuals
scoring less than -3 are represented by black pixels.

contains a nearly equal mix of both. (Remember that the two solutions are bitwise
complements of each other.) Local selection also maintains much greater diversity
of genotypes than panmictic selection (Figure 2). What we expect to see is a cloud
of mutants surrounding (in the adaptive landscape) an optimal solution. Because
local mating finds and maintains both optimal solutions but panmictic mating finds
only one, we would expect local mating to have something like twice the genotypic
diversity of panmictic selection. This is clearly not the case—we observe a factor of
4 difference from stochastic selection and a factor of 10 from linear rank selection.
We find this difference to be particularly important, because it demonstrates that at
equilibrium, local selection explores many more genotypes in each generation.

The inbreeding coefficient results (Figure 3) are quite interesting, because they
show two different sources of inbreeding. As we expected, local mating is characterized
by a high degree of inbreeding throughout the experiment. The inbreeding is a result
of fixation on a particular genotype within each deme due to selection pressure and
random genetic drift. The fixation is local—diversity is maintained because each
deme fixes on a different genotype.

On the other hand, panmictic selection results in almost no inbreeding until the
population begins to converge on a particular solution. When this occurs, we start
to observe excess homozygosity, which is due to selection for the optimal genotype.
Linear rank selection shows a very high degree of inbreeding, indicating that very few
sub-optimal genotypes are chosen as parents for the next generation. In contrast,
stochastic selection shows a much lower degree of inbreeding. This shows that the
stochastic selection algorithm allows sub-optimal genotypes to be sampled with a
higher frequency (which is consistent with the greater allele and genotype diversity).

The diversity and inbreeding data demonstrate the dramatic dynamical differences
between local and panmictic mating. It is clear that local mating is more appropriate
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for artificial evolution, because it maintains a broad genetic search for thousands of
generations. If the adaptive landscape or fitness function were changing over time,
this diversity would allow the population to exploit the genotypes which suddenly
have higher relative fitness values. Local mating would be more appropriate than
panmictic mating for artificial life applications, even if local mating results in slower
evolution. Fortunately, this is not the case.

The data on the speed of evolution shows that the dynamics of local mating
results in a faster and more robust genetic algorithm. Local mating is characterized
by faster evolution both in terms of the number of fitness function evaluations and
time required to find an optimal solution. The robustness of local mating is rather
surprising: across all population sizes, both 1 and 2 dimensional geometries, and all
R values, local mating never failed to find an optimal solution, while both of the
panmictic algorithms had a significant fraction of their runs “time out” (no optimal
solution found within 1000 generations).

The fact genetic algorithms that use local mating can be significantly faster and
more robust than traditional genetic algorithms is an important result, and suggests
that further investigation is in order. While many important theoretical results have
been developed for panmictic mating algorithms, it is not clear that any of these
results can be applied directly to local mating. Also, it is not at all clear how local
mating will perform with small populations, although the difference in robustness
between local and panmictic mating is greatest for the smaller population sizes that
we examined. In addition, we have only examined one very simple local mating
algorithm, and it is almost certainly not the best that can be (or has been) found.
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